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A Third-Order Accurate Variation Nonexpansive Difference 
Scheme for Single Nonlinear Conservation Laws 

By Richard Sanders* 

Abstract. It was widely believed that all variation nonexpansive finite difference 
schemes for single conservation laws must reduce to first-order at extreme points of the 
approximation. It is shown here that this belief is in fact false. A third-order scheme, 
which at worst may reduce to second order at extreme points, is developed and ana- 
lyzed. Moreover, extensive numerical experiments indicate that the third-order scheme 
introduced here yields superior approximations when compared with other variation 
nonexpansive difference schemes. 

1. Introduction. In this paper we introduce and analyze a formally third- 
order accurate finite difference scheme used to approximate solutions to the single 
hyperbolic conservation law: 

(9 
+ af(u) = O. U(x, ) = UOW) 

Future work will be devoted to extending the techniques presented here to hyper- 
bolic systems in one and many space dimensions. 

In recent years it has been found that incorporating the property that the vari- 
ation of the exact solution to (1.1) does not increase in time into the design of 
approximating schemes often leads to superior numerical results when compared to 
approximations coming from methods where this property is ignored. However, it 
was widely believed that total variation nonexpansive schemes (or loosely speaking, 
total variation diminishing, or TVD schemes) must automatically reduce to first- 
order accuracy near extreme points of the solution; see [8], [10]. In this paper we 
show that TVD schemes need not be incompatible with high-order accuracy. We 
introduce a high-order technique that yields approximate solutions to (1.1) which 
have nonexpanding variation in time and which also satisfy the same maximum 
principle given by the exact solution to (1.1). Moreover, away from extreme points 
of the solution, we show that our method is formally third-order accurate, and 
around extreme points it can reduce to no less than second-order accuracy. 

This paper is divided into four sections. In Section 2 we develop an approxima- 
tion procedure for functions of bounded variation. Our approximation procedure 
cannot increase the variation of the function being approximated, and it is third- 
order accurate in regions where the approximated function is smooth. In Section 3 
we show how to evolve this approximation in time in a way that is variation non- 
expansive, consistent with the weak form of (1.1), and we prove that the resulting 
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scheme is formally third-order accurate in space and time. Finally, in Section 4 we 
present some numerical examples. 

2. Variation Nonexpansive Third-Order Accurate Approximation. 
The goal of this section is to develop an approximation procedure that has the 
following desirable properties. First, we require that our procedure yield an approx- 
imation that retains the cell average of the function being approximated. Second, 
we require that our procedure contract the total variation as well as local extrema 
of the function being approximated. Finally, when our procedure is applied to 
a sufficiently smooth function, we require that the resulting approximation have 
third-order accuracy with respect to the mesh size. As is seen in the next sec- 
tion, these factors are fundamental to the development of our stable and high-order 
accurate finite difference method. 

To begin, we give a few preliminary definitions. Partition the real line into 
nonoverlapping intervals, R = U3 Ij, where I3 denotes the semiclosed interval Ij = 
[x;, x3+1). Let 4j denote the closure of I3 and let I5 = (xj, xj+j). Let A\x represent 
the length of Ij, Ax = x+1 - x3, and denote the midpoint of Ij by Xj+l/2. Finally, 
let X7 (x) represent the characteristic function of the open interval IO?, i.e., 

x(x)_ {11 xE I? 
Xi W 0, otherwise, 

and let 8(x) be given by 

8(x) = 
1 x =O, 

( 0, otherwise. 
Now consider an interpolation taking the form 

(2.1) Adu)(x) = Z [Pj(X - Xj+l/2)Xj(X) + U(Xj)6(X - Xi), 
3. 

where each P3 is a polynomial. To obtain the desired third-order accurate approx- 
imation, the degree of PJ must be at least two. For organizational reasons, we list 
here all of the properties that M (u) is required to satisfy. For any u E BV we 
require that 

(2.2a) j MA(u)(x) dx=j u(x) dx, 

(2.2b) Var(MA(u)) < Var(u), 

(2.2c) sup(M` (U)) < sup(u), inf (M (u)) > inf (u), 

and in the event that u E C3 we require that 

(2.2d) Ha`(u)(x) = u(x) + O(ZAx3). 

To produce a first candidate for Pj, which below is denoted by PJ, we for the 
moment forego considering properties (2.2b) and (2.2c) and concentrate on first 
satisfying (2.2a) and (2.2d). Once this is accomplished, the complete problem is 
treated by suitably modifying PF] in such a way that the resulting scheme yields an 
approximation that satisfies all of the properties above. 
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Let U(x) denote the antiderivative of u(x); U(x) = fgx u(s) ds. It is well known 
(see [4], for example) that the cubic Hermite interpolation to U on the interval I 
is given by 

3 

H(Ij, U)(x) - (U)hi (x) 
k=O 

where 
ho(x) =1, h3(x) = (x - Xj), 0 1 

h3(X) = (x- xj)2, h3(x) = (x - xj)2(x -Xj+), 

and where 

3(U) = U (Xj), 3(U) = U'(Xj) 

c4(U) = [A+U(Xj)-AxU'(xj)]/Ax2, 

ae3() = [Ax(U'(xj) + U'(xj+i)) - 2A+U(xj)]/Ax3. 

Note that A+ represents the forward difference operator, A+U(xj) = U(xj+l) - 

U(xj). It is furthermore well known that when U E C4 the formula with remainder, 

U(x) = H(Ij, U)(x) + !UIV(E(x))(x - xj)2(x - Xj+1)2 

is valid for some ((x) E IQ. Differentiating this formula, we arrive at 

u(x) = dH(Ij,U)(x) 

(2.3) + 3?jU"'W((x))(X - Xj+112) ((X - Xj+112)2-( )2) 

+ c(x)(x - Xj)2(XXj+-)2 

Recalling that u(x) = U'(x), we easily conclude that 

(2.4) d H(IjI U)(x) = [ - (U + UL-)/4] + [ UR - -i--] + 3[UR + i]02, 
where above and throughout we let P, iIZ, and U and 9 denote the normalized 
variables 

(2.5) UL U(xj)- 
UR = u(xj+l) -- 

0 = (X-Xj+1-2)IAX. 

The subscripts on the left-hand side above have been omitted for ease of presenta- 
tion. At this point we are led to take as our first candidate for Pi the quadratic 
polynomial 

(2.6) P1% (x - Xj+112) = dH(Ij, U)(x), 

which by construction satisfies both (2.2a) and (2.2d) when restricted to the interval 

Ii. 
Next, we give an example to demonstrate that the interpolation formula given 

by (2.4) does not in general yield an approximation that satisfies either (2.2b) or 
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(2.2c). Consider interpolating the function u(x) = X3 on the cell [0,1] using formula 
(2.4) above. Doing the calculations we arrive at 

Xo = 2( 
i 

+ XZ- )+ 

However, the value of Po at x = 1/6 is -1/24. This demonstrates that Po violates 
both (2.2b) and (2.2c) locally. Therefore, one can modify u outside [0,1] to obtain 
an example where the interpolation procedure implied by (2.4) violates (2.2b) and 
(2.2c) globally. This "overshoot" phenomenon can however be rectified. Overcom- 
ing this problem, which is inherent to cell average preserving piecewise quadratic 
interpolation, is the subject of the remainder of this section. 

Before continuing, we introduce some further notations. Let a quadratic P(a, b) (9) 
be defined by 

(2.7) P(a, b)(O) = 3(a + b)02 + (b-a)O-(a + b)/4, 

and note that this quadratic satisfies 
1/2 

P(a, b)(-2) =a, P(a b)(2 ) =b, P(a, b)(0) dO=0. 
-1/2 

Recalling the definitions of (2.5), set 

M = maxmod(', U^), m = minmod(u^L, 

where here the maxmod and minmod functions are defined by 

maxmod(a, b) - a if=al?IbI, I 
lb if Jal < jbj, 

minmod(a,b) = Jb if al I JbI 
a if Jaj <jbl. 

Furthermore, let p represent the ratio 

p = m/M, 

and observe that JpJ < 1. Finally, let E represent the relevant extreme value of 
u - on I (relevant in a sense made apparent below), which we define here by 

E supl(u-) if M < 0O 
1 infy(u- f) if M> 0 

and when M 5 0 let E be given by 

E = E/M. 

Our approach to eliminate any possible overshoot or undershoot, as was exem- 
plified by the example above, is to insert 

(2.8) P (TL UL, rR UR) (0) + -, 

for P3(x - xj+112) in the formula for "(u)(x), using certain to be determined 
values of 0 < TL, TR < 1 (recall that we have omitted subscripts for convenience). 
The decision to insert a quadratic of the form (2.8) into (2.1) is quite natural when 
one observes that first when TL = rR = 1 we have that 

P(iLU) (9) + 5V = Pj (X -Xj/ 
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and second for any FL and TR we also have 

j [P(rLi, TRUR)(0) + _] dx = j u(x) dx. 

Moreover, since P(a, b)(O) is affine in a, b, we have that 

p1P (x - Xj+ 1/2) - (P(TLUL R Z-R-R) (O) +v) 

= jP((1 -L)i (1 -TR)UR)(O)I 

which for 1j1 < - is bounded above by 

max((1- TL)IUL1, (1 - TR)IURI). 

Therefore, inserting (2.8) into our interpolation formula R" (u) in place of 
Pl (x - xj+1/2) will also yield a third-order accurate approximation provided that 
,TL and TR are constructed so as to satisfy 

(2.9) (1 -rL) ULI = O(Ax3), (1-TR)IURI = O(Ax3) 

(in the event that u(x) is smooth of course). 
At this point it should be clear to the reader that if PJ (x - x +1/2) is monotone 

on I, it would satisfy the local estimates 

(2.10) Var(PJ(x - Xj+112)) 1 < Var(u(x))j1 

and 

SUp(P' (X - Xj+112)) < SUp(u(X)), 

(2.11) I I 
inf (P1 '(x - x+ 1/ 2)) > inf (u(x)). 
I 3I 

The goal now is to derive a recipe for determining FL and TR so that 

P(TLUL, TRUR)(O) + v 

satisfies the estimates above on every cell Ij, regardless of whether P1 (x -x+i1/2) 
is monotone on Ij or not. Then we need to verify that this recipe at the same time 

implies the error estimate (2.9). 
Remark. When u(x) is smooth we see upon differentiating (2.3) that 

P~ (X- xj+1i2) is monotone on I unless for some x in I we have 

u'(x) = 2U"'t(x) (92 - Ax2 + O(AX3). 

Therefore, it is necessary to modify PJ (x - xj+12) only near certain (in a sense) 
nongeneric points. Loosely speaking, these points can be thought of as extreme 

points (or approximate extreme points) of u. 

A straightforward calculation shows that the absolute value of the critical point 
of P ((x - xi+1/2), in the normalized variables defined above, is 

IOcritl - 6(1 + )* 

Therefore, P1 3(x-xj+12) fails to be monotone on I only when 

i-p < 1 

6(1 +p) <2' 
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or equivalently when 

(2.12) __< p< 1. 

Again we calculate in the normalized variables to find that the critical value of 
P1 (x -Xj+ 1/2) is given by 

Pcrit =-M (1+? p + p) 
? 

3(l +p) 

Using the fact that P1 (x - xj+1/2) is convex (resp. concave) when M > 0 (resp. 
M < 0), one easily determines that PIJ(x - xj+1/2) satisfies the local estimates 
(2.10) and (2.11) when, for 1j1 < 2 it takes its values in the range of M + X', 

2~~~~~~~~ m + v and E + X1. In the nontrivial case, 10crit I < 1, one easily checks that this 
fact is implied by the inequality 

(2.13) 1+p+p <-E 
3(1+ p)- 

(note that E < 0). Therefore, even in the case when P1 (x - x +1/2) has its critical 
point inside the interval Ij, when inequality (2.13) is satisfied we are assured that 
the local estimates (2.10) and (2.11) are satisfied by PJ (x - x+ 1/2) (or equivalently 
by (2.8) with TL = R= 1). 

The only situation that remains to be considered is (2.12) satisfied, and (2.13) 
violated. To obtain the desired stability and accuracy in this situation, some care 
must be exercised choosing tL and TR. This task is divided into two separate cases. 

Case 1. (2.12) is satisfied, (2.13) violated and p > 0. 
We begin with a simple lemma given without proof. 

LEMMA 2.1. Let I9cj < 2 denote the critical point of P(iiLiiR)(9) +. We 
then have that 

M P(UL, U (#c) (1 -p)2 + 3(1 + p)2 
MULIUR ) l2(l +p) 

Now define r+ by 

T+ 
-E 3(1 + p) 

1 + p + p2' 

and observe that in this case 0 < T+ < 1. It is straightforward to check that if we 
set 

(2.14) TL =T+, TR=T+ 

in this case, the critical point of (2.8) agrees with the critical point of P3' (x-x +1/2) . 

More importantly, however, choosing TL and TR as prescribed above forces the 
critical value of (2.8) to become exactly E + X, the relevant extreme value of u. 
These observations allow us to again conclude without proof: 

LEMMA 2.2. Choosing TL and TR as above, we have in the present case that 
the function 

( u(xj), X-Xj, 

P(X-Xj+112) = P(TLUL,rRU`R)(G) +-, x E I0, 

t tb(Xj+l), X = Sx+11 

defined on I, satisfies the local estimates (2.10) and (2.11). 
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Finally we verify that TL and TR as given by (2.14) satisfy the error estimate 
(2.9). 

LEMMA 2.3. Choosing TL and rR as above, we have in the present case that 

(1-tL)|UL|= O(AX ),(1-_TR) I 
--- 

= (,AX3) 

whenever u(x) E C3. 

Proof. First observe that formula (2.3) allows us to conclude that there is a 
bounded function, say 7(x), such that on I 

P(UL,UR) (0) + Y = U(x) + tq(X) - 02 ) Lx3. 

From this we get that 

P(T+ ULr+ i )(0) + v 

= U(x) + r(x) (1 _ 2) Z + (1- r+)M P(UL UR)(0) 

At the critical point of P(ij, 1)(0), say O0, we see that taking TL = 'R = r+, as 
we have done in this case, implies the inequality 

sgn(M) [P(r+UL, rrT+ ) (0c) + s? ] < sgn(M)u(9cAx + xj+ 1/2), 

and this implies that 

(1 - r+)IMI [-P(UL UR))(0c)j < 17K(A + Xj+1/2) -4 oc) Az. 

The result of Lemma 2.1 now makes the desired result obvious. 
Case 2. (2.12) is satisfied, (2.13) violated and p < 0. 
Rather than modifying both U` and UR as was done in the case above, here we 

modify only the end point value with maximum modulus. Consider the following. 
For p < 0 define r_ by 

--[(p + 3E) - (3(E - p)(3E + 2 

and observe that when p < 0 we have that E < p, thus showing that rT is real. 
Now define FL and FR by 

[1 if |ULI < 1URI7 
2 15 F~~~'L = i|UL| >UR| (2.15) TL rl- ifjII I 

- 
I Ij 

( * ) [ ~~~~~T_ if IULI < 1URI7 
TR = 

1 if |UL| >URI 

One easily computes that this particular choice of FL and rR gives 

(2.16) = - ir_-p 
6 r- + p 

as the critical point of (2.8); the sign above depends on which normalized end point, 
UL or UR, has the maximum modulus. Choosing TL and rR in this way also forces 
the critical value of (2.8) to be E + X. Moreover, modifying only the end point 
with maximum modulus in this case does not introduce any new oscillations, as 
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could be the case if we modified here the end point with minimum modulus. Thus 
the function 

(U(Xj), X = Xj 
P(X -X+/112) = j P(rLULrRUR)(f) + at XE I, 

U (Xj+l), X = Xj+j 

with rL and TR given by (2.15) has, in this case, only one local extremum in I, and 
its extreme value is E + .. 

LEMMA 2.4. In the present case, rT satisfies the inequalities -2p < r_ < 1. 

Proof. Set 

r- (s) =- [(p + s) - (3(s-p)(3s+p))1/ 1 

and compute that 

d 
(s) <0 forp>s>s- +3(l+p) 

Since r- (p) =-2p and r- (s.) = 1 the final result is easily seen. 
These observations above combine to give 

LEMMA 2.5. In the present case, choosing zrL and rR as in (2.15) implies that 
the function P(x - Xj+112) satisfies the local estimates (2.10) and (2.11). 

Again we verify that rL and zrR given by (2.15) satisfy the error estimate (2.9). 

LEMMA 2.6. Choosing TL and TR as above, we have in the present case that 

(1 - TL)IULI - O(AX ), (1X-3TR)IuRI = O(AX3) 

whenever u(x) E C3. 

Proof. We assume that uY = M since the proof is similar otherwise. Following 
the proof of Lemma 2.3, we arrive at the inequality 

(1 -rR)URI[-P(0, 1)(0c)] < i7(9cAX + Xj+1/2) - oC) A. 

This inequality and some simplification gives us that 

2 
(1-TR)jui| < const [ +1 

Using the result of Lemma 2.4 together with (2.16) implies that Oc ? 1/6, and this 
inserted into the inequality above completes the proof of the lemma. 

We conclude this section by condensing its main results into a theorem. 

THEOREM 2.1. In the interpolation formula (2.1), define Pi(x - Xj+112) by 

Pi(X - Xj+1/2) = P(rLUL,rR UR)(O) +Y, 

where rL and TR are given by the following recipe: 
If -1 < p < -1/2, then 

FL1, TRl. 

If-1/2 < p<0 and =M, then 

rL= 1, TR = min('r, 1). 
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If-1/2 < p < O and ij = M, then 

TL =min(T,1), TR = 

If 0 < p < 1, then 

TL = min(T+, 1), TR = min(T+, 1). 

Then the interpolation formula (2.1) yields an approximation 3f t(u) that satisfies 
all properties (2.2a) through (2.2d). 

3.1. Evolution of the Approximation. In this section we develop a simple 
and accurate method to evolve a piecewise parabolic approximation to the solution 
of (1.1) from one time level to the next. This evolution scheme together with 
the reconstruction algorithm of Section 2 combine to yield a generically third- 
order accurate finite difference scheme. Moreover, the resulting approximation 
has nonincreasing variation in time and satisfies the same maximum principle as 
satisfied by the exact solution to (1.1). 

To implement the approximation of Section 2, three basic pieces of information 
must be available for each cell. Specifically, the cell average and the left and right 
cell boundary point value of the function being approximated must be known. To 
obtain this information, we employ a staggered spatial mesh together with the 
method of characteristics. To simplify the presentation, we discuss our procedure 
for one time iteration only and note that succeeding time iterations follow in an 
analogous manner. 

Let T(uo)(x, t), t > 0, denote the solution to the differential equation 

(3.1) ,9u + ,) (u) = o, u(x, 0) = uo(x). 
As in the previous section, partition the real line into nonoverlapping intervals 

Uj Ij, with Ij = [xj, xj+1), and approximate uo E BV by 

(3.2) v (x) = St (UO) ( . 

Consider the staggered partition Uj Ij-1/2, Ij-1/2 = [xj-112, xj+112), along with 
its associated staggered reconstruction algorithm MS. The object of our evolution 
technique is to determine a piecewise parabolic approximation of T(v?) (x, At/2). 
This goal is accomplished by computing a slight perturbation of MS (T(v0) (., At/2)). 

To avoid abusing notation too much, we assume that v?(x) is given by 

(3.3) v?(x) = M ,(UO)(), 

where 3 (and Ns as well) denotes a "preconditioned" version of MA. By pre- 
conditioned we mean specifically that the data which MA is applied to is modified 
(in a way we discuss in detail at the end of this section) so that for all u in the 
range of uo and all j, 

(3.4a) | f" (u)l '\t max |d Pi (X - j+ 1 /2) |< 2. 

Written in terms of the normalized variables (2.5), (3.4a) becomes 

(3.4b) If"(u)IA max |12dOP(TLd ITRU)(0) < 2, 
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where A = At/Ax. Essentially what we do below to enforce condition (3.4) is 
to push extremely large gradients of u out of the quadratic P. and into jump 
discontinuities at cell interfaces. A condition much like (3.4) is made in [10]. An 
additional condition that we assume throughout is the Courant condition; that is, 
for all u in the range of uO we assume the ratio A is taken so that 

(3.5) If'(u)IA < 1. 
With (3.4) and (3.5) we have: 

LEMMA 3. 1. The characteristic equation 

d x(s, t) = f'(v(s)), x(s, O) = s E IQ?1, 

has a unique solution x(sj~, t) such that 

x(spi-, At/2) = xJp1/2, si e_1 E5 

Proof. Consider finding the root of the function 

H(s) = f'(v0(s))At + 2(s -X;_l2). 

According to (3.5) we have that 

H(x1_J + 0) = f'(v0(xj11 + 0))At - Ax < 0, 

H(x3 - 0) = f'(v0 (x3 - 0))At + Ax > 0, 

and (3.4) implies that for every s E IQ 

d 
H(s) = f"(v0(s))At 

d 
PI-j(s - s_-1/2) + 2 > 0. 

Therefore, H(s) has a unique root in IOU1, call it s _-, and 

x(s3-,I t) 
= 

s.-1 + f'(v0(spil))t 

defines the desired characteristic. 
The result of the previous lemma guarantees that through each point 

(xj-1/2, At/2) there is a unique backward characteristic of (3.1) (with u(x, 0) = 

S (uo)(x)), intersecting the line t = 0 within cell Ij-1. The divergence the- 
orem applied to (3.1) over the trapezoid defined by the points (xj_112, At/2), 

(x3;1/2,A At/2), (sJp, O) and (s,, 0) gives the formula 

+ J T(v?)(x, At/2) dx 

(3.6) /2 
87 

=A i| vO(x) dx - 2A+ (f (v0(s8i)) - fP(v0(s 1))v0(s3 i)) Ax -12 

Therefore the average of T(v?)(x, At/2) on every cell Ij11/2 is given exactly by the 
right-hand side of (3.6). Moreover, the cell endpoint values of T(v?)(x, At/2) are 
given exactly by 

(3.7) T(v0)(xp_1/2, At/2) = vo(sp1), T(v0)(xj+112, At/2) = v0(sj). 

For convenience we adopt the following notation. Let 

(3.8) u1 = 
v0(s8l), u2 = 

v0((sp_1 + x3)/2), U3 = V0(x3 - 0), 

U4 = V0(x3 + 0), u5 = v0((xi + s8)/2), u6 = v?(s), 
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and rewrite the right-hand side of (3.6) with the aid of Simpson's rule as 

j- 1/2 = F(uiu2,u3,u4,us5u6) 
1 

= (1 - f'(u6)A)(u6 + 4u5 + U4) 12 

(3.9) + 1(1 + f'(ul)A)(u3 + 4u2 + Ul) 
12 
A 

- 2[(f (U6) - f'(u6)u6) - (f (ul) - f'(Ul)Ul)]. 

We pause now to give a direct proof of a result concerning the monotone and 
conservative operator F( ). 

LEMMA 3.2. Let 

M= max (v0(0)), m= min (v0()), 
[8 3-1,88] -1,83] 

and suppose that conditions (3.4) and (3.5) are satisfied. Then, when Vj-1/2 is 
given by (3.9), we have that 

m < Kj-112 < Ma 

We prove the lemma using a more restrictive version of (3.4). That is, we replace 
2 on the right-hand side of (3.4) with 2/3. The interested reader can easily relax 
this assumption. We choose the route of simplicity here over generality, for ease of 
presentation. 

Proof. First one easily checks that 

F(m, m, m, m,l Mm) = m, F(MM, Ml, Ml, Ml M) = M. 

Condition (3.5) gives us that F is an increasing function in arguments two through 
five. Moreover, a simple calculation gives us that 

F(,..) = -[(1 + f'(u1)A) + f"(ui)A(u3 + 4u2 -5u)], au, 12 
a1 

a F ...= 1[(1 - f'(u6)A) - f"(u6)A(u4 + 4u5 - 5u6)], aU6 12 
and another simple calculation gives us that 

-5(ul - U3) + 4(u2 - u3) = 3x(l + fP(ui)A)dP1(X* - xj-1/2), 

with x* = x3 + 2(sj-, - x;), and 

-5(U6 - U4) + 4(U5 - U4) = -3AX(l - f dxAPi (z -j+112) 

with x' = x; + 2 
(sj - xj). Putting these identities together we find that 

a@ Ft ) > (1 + f/(u,)A ) (-3 f/("u)At di _1|X 

09 
F(.. ) >1 

- 
f'(U6)A ) (-3 If/"(u)t d Pi 

Modified condition (3.4) now implies that F is also increasing in argument one and 
six. Arguments ul through u6 can now be perturbed to m, as well as M, in such 
a way as to maintain condition (3.4), therefore establishing the desired result. 
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Next we show that the reconstruction-evolution algorithm developed above is 
third-order accurate in regions where the smooth initial datum uO satisfies 

(3.10) Iu0(x)I> ? luo/(x)L~x2+Q(Lx3), 

and in regions where uO violates (3.10), loosely speaking near local extrema, we 
lose at most one order of accuracy. In the present context, what we mean by an 
rth-order accurate scheme is that if we define uj-1/2 to be the j- 1/2 cell average 
of the exact solution to (3.1) at t = At/2, starting with smooth datum uO, that is, 

Uj-l/2 = 
1 

T(uo)(x,LAt/2)dx, 
Ax 

-1/2 

then the rth-order scheme gives a j - 1/2 cell average, say Vj-1/2, which satisfies 

(3.11) 1Ij-1/2 - Uj-1/21 = O(Axr+l). 

At the present time this notion of accuracy has not been shown to have rigorous 
theoretical significance. Nevertheless, extensive numerical evidence demonstrates 
the dramatic improvement of the quality of approximations coming from certain 
higher-order methods; see [7], [8] for example. 

LEMMA 3.3. Suppose that uO E C4 and that At is taken sufficiently small so 
that M3t(uo) satisfies (3.4). Moreover assume that uo(x) satisfies (3.10) for all 
x E Ij1 U Ij . Then we have that 

_ -uj-1/2| < const AX4, 

where Vj-1/2 is given by the reconstruction algorithm of Section 2 combined with 
the evolution operator (3.9), and -j-1/2 is the j - 1/2 cell average of the exact 
solution to (3.1) at t = At/2. 

Proof. Since assumption (3.10) implies that no modification of P^ 1 or P1% is 
performed in the reconstruction, we have that in Ij-1 U Ij 

v?(x) { Pjl~i(x-Xj-1/2), x E Ij-1, 

P( (x- Xj+112), x E Ij; 

see the remark of the previous section. The divergence theorem allows us to rewrite 

j- 1/ 2 as 

(31 1/2 = 2 Pl (X - xj112) dx + 1X - Xj+ 1/2) dx] 

-l[f|~t/ (f (T(vo) (Xj+2 , t))2-f (T(v0) (Xj - / 2 t))) dt] 

and also to write uj31/2 as 

(1/2 ) 1: ;:2u dx 

(3.13) - ~1 [jt/2 (f(T(uo)(Xj+1127t)) -f(T(uo)(Xj-1127t)))dt] 
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Identity (2.3) gives us immediately that 

1 Ixi IXj+1/2 

AZ ] J P1 l (X - Xj 1/2) dx + PI (x - xj+ 1/2) dx 

(3.14) XJ+1/2 

-fJo uo(x) dx 
IX -1/2 

< const Ax4, 

where the constant above depends on sup, _luj (juI j). The quantity 

E{+1/2 (t)_ f (T(v )-(x f12 t))-f(T(uo) (Xj+ 1/2, t)) 
can be investigated over the time interval 0 < t < L\t/2 using characteristics. One 
easily finds that 

T(v?)(Xj+112,t) = Pj(s'+1/2(t) -Xj+12), 

T(u?) (Xj+ 1/2, i =UO (Su 1/2 (0)) 

where s.+1/ 2(t) and su.+1/2(t) satisfy 

Xj+ 1/2 = 83+ 1/2(t) + f I(V0(8~/(t)t = 3'+112(t) 

Xj+112 = su 1/2(t) + f'(uo(s, 1/2(t)))t. 

The characteristic equations above, along with the error estimate (2.2d), combine 
to imply that 

(3.15) js>112(t)-s?+112(t)j ? cost x3t, 

provided that Pj (x - x+ 1/2) satisfies the slope condition (3.4) and 0 < t < zAt/2. 
It should be noted at this point that (3.15) remains valid whether assumption (3.10) 
is satisfied or not. Adding and subtracting f(v0 (si+1/2(t))) into Ef{+1/2(t) yields 
the identity 

(3.16) E{+1/2(t) 
= f'(Uo(sj+1/2(t)))(v0(s8U1/2(t)) -U0(s 1/2kT 

+ O(1)LAx3t + O(Ax6) 
which is again valid whether assumption (3.10) is satisfied or not. The same analysis 
yields an expansion for Ef_1/2(t) with j-1/2 replacing j+1/2 in the formula above. 
Moreover, 

(3.17) 82+1/2(t) 
- 

su1/2(t) 
= AX + O(Axt), 

which as above is valid when (3.4) is satisfied and 0 < t < At/2. Finally, noting 
that Pf1(x-Xj -1/2) and PJl(x - x+ 1/2) both satisfy smooth error formulas (see 
identity (2.3)), we easily conclude with the aid of (3.17) that 

1 At/2 

ax7 ( EI+1/2 (t)-E 1/2(t))dt <constx2At2, 

which completes the proof of the lemma. 
To see that the order of accuracy can be no less than two, regardless of whether 

uo satisfies (3.10) in Ij-1 U Ij or not, simply return to Eqs. (3.14) and (3.16) of 
the lemma above and recall from (2.2d) that 

u(x) = (u)(x) + O(A x3), 

for any smooth function u(x). 
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Next we discuss the piecewise parabolic reconstruction of T(vO)(x, At/2). The 
evolution procedure described above yields the quantities 

(3.18a) f T(v0)(x, At/2) dx, 
-1~/2 

(3.18b) T(v?) (Xj-1/2, At/2), 

(3.18c) T(v?)(xj+112, At/2), 

in each cell Ij-1/2. This is enough information to construct the basic parabolic 
approximation Pl112(X - Xi). To implement the full reconstruction of Section 2, 
we need information concerning the values of 

max (T(v0)(.,zAt/2)), min (T(v0)(.,At/2)). 
Ij-1/2 Ij-1/2 

However, these values are in general difficult to calculate exactly. In place of them 
we use instead 

(3.19a) max (v? )), 

(3.19b) min (vm )), 
[83j-1,8S] 

to calculate TL and TR; see Theorem 2.1. Over cell Ij_1/2, (3.19a) and (3.19b) serve 
as an upper and lower bound for the maximum and minimum of T(vO)(x, At/2), 
respectively. Therefore, using (3.19) does not affect the accuracy of the approxi- 
mation. In fact, if v0 is continuous across the interface between cells Ij-1 and Ij, 
(3.19) gives the maximum and minimum of T(v0)(x, zt/2) on Ij-1/2 exactly. 

Define the reconstruction of T(vO)(x, At/2) by 

(3.20) M9s (T(vO) (At/2)) (x) = EPj 1/2(X - xi) + v0 (s- l)06(X- j-1/2) 

where PjF112(X - Xi) is obtained from the algorithm of Theorem 2.1, using (3.18) 
and (3.19) on the staggered mesh Uj Ij-1/2. The results and techniques of Lemma 
3.2 and Theorem 2.1 now combine to make the proof of the following lemma obvious. 

LEMMA 3.4. Given that uo E BV, and that v0(x) and Ms(T(v0)(., At/2))(x) 
are obtained by the methods described above, we have the estimates 

(i) Var(Ws (T(vo) (, At/2))) < Var(v0) < Var(uo), 

sup(WS(T(vO)(.,Zt/2))) < sup(v0) < sup(uo), 

(ii) ~inf (Ms5 (T (v? ) (-, / t/2) )) > inf (v? ) > inf (uo) . 

We have assumed throughout that the reconstruction algorithm applied to pre- 
conditioned data yields an approximation that satisfies properties (2.2a)-(2.2d) as 
well as satisfying property (3.4) (a particular preconditioning method is described 
at the end of this section). Therefore, defining v1 by 

v1(x) = S (T(vo) (. At/2))(x) 
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and succeeding v7 analogously, we have that 

(3.21a) Var(v72) < Var(uo), 

(3.21b) sup(v7) < sup(uo), inf(v0) > inf(uo), 

for all n > 0. Extend the discrete time approximation Vn to all t > 0 by 

(3.22) v" (x, t) = ZT(vn)(X, t -nit/2)Xn(t) 
n 

where 

Xn (t) {1, nt < 2t< (n+1)At, 
{O, otherwise. 

The usual techniques combine to show that every sequence {v< }, with A~x and At 
tending to zero, with fixed ratio At/Ax satisfying the Courant condition, has an 
L' convergent subsequence on any compact subset of R x R+; see [5], [12]. In 
addition, we have 

THEOREM 3. 1. If v = limbxo vA, with At/Ax fixed and satisfying the Cou- 
rant condition (3.5), and if uo E BV, then v is a weak solution to (3.1). 

Proof. Let p E C' (R x R+) have compact support. A straightforward calcula- 
tion gives the identity 

(Vi Wot + f (v0 )ox) dx dt + uop(x, 0) dx 
RxR+ 

=E (T(Vn) A (T(vn)))>p(x, t n) dx 
n=1 

+ I - 
A 

(uo))(p(x, 0) dx. 

The idea is to show that the right-hand side of the identity above tends to zero as 
A\x tends to zero. Using the result of Lemma 3.2 in [13], together with properties 
(2.2a) and (2.2b), we easily find that for any u E BV 

J Ilu- (u)Idx < 2z\xVar(u). 

This inequality allows us to bound the absolute value of the identity above by 

[s ( max jpo(Xttn)_- (ytn)I) +maxko(x,O) 122xVar(u0), 

which tends to zero as ?Ax tends to zero. 

3.2. Preconditioning of the Data. The preconditioning algorithm we de- 
scribe below serves two purposes. First, it mollifies the basic piecewise quadratic 
interpolation in regions of large variation. Second, it is designed to limit the slope 
of the approximation on the interior of grid cells so that (3.4) is guaranteed to 
be satisfied. Moreover, our preconditioning is designed so that the error formula 
(2.3) does not degrade through terms of order Ax 3. Since preconditioning will be 
the main topic of future work, we give here only a rough sketch of the particular 
technique we use in the numerical examples of the next section. 
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Let V(xj) represent the point values of the approximation at cell interfaces xj 
(see (3.18) and note the obvious change of notation). Moreover, let Vj be given by 
(3.18a). Formula (2.8) implies that 

(3.23a) (v(xj+i) - j) + O(Az4x) 
= (j-1 - v(xj-r)) + 2(Vj- - Vj) + 4(-;j - v(xj)), 

and 

(3.23b) (v(xj)- ) + O(AZX4) 
= (j+l - v(xj+2)) + 2(j+l - j) + 4(j - v(xj+i)). 

Denote the right-hand sides of (3.23a) and (3.23b) by UR and UiL, respectively. 
Now define UjR and UL by the following recipe. For the case when Iv(xj+1) -Ij > 

Iv(xj) -jl, set 

UR = max(v(xj) - j, min(|v(xj+1) - I, IjUI)) 
(3.24a) sgn(v(xj+i) - j) 

UL = V(XI,) - -Vi 
and when Iv(xj) -j ? Iv(xj+1) -jI set 

UR = v(xj+) -j, 

(3.24b) U L = max(Iv(xj+i) -j 1, min(Jv(xI ) -V I, IUL I)) 
* sgn(v(xj) -j). 

Again, we have omitted the subscripts on the left-hand side for convenience. So we 
have by using (3.23) and (3.24) that 

UR =v(xj+i)-V + O(?x4) 

and 

UL = (j-j + O(~X4). 

Therefore, if we replace the point values v(xj) and v(xj+i) in cell Ij by UT + j 

and UR +j, respectively, we do not affect the results of Theorem 2.1. This defines 
our mollification procedure. 

To limit the slope of Pi(x - Xj+1/2) so that (3.4) is satisfied, fix S > 0 so that 

S < 2/(A maxlf"I) 

Next, define d by 

d _ J min(IU-LI, |UR1, S/2) if UWL -UR < 
0, 

| 0 otherwise, 

and set 
UL2nd = d s sgn((UT) UR2nd = d * sgn((UR) 

By construction, UL2nd and UR2nd yield a function that automatically satisfies the 

slope condition (3.4). Next, define 

S2 = 2 d, 

S3 = 2 * max(I2UR + ULI, I2VL + URI), 

7 = max S3 S ? 
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and note that 0 < q < 1. S3 is nothing more than the maximum of jdPj(9)/d~j on 
the interval Ij. We have from Section 2 that 

du 
S3-S - + O(Ax) Ax-S, dx 

which therefore implies that i1 = 0 for smooth functions when Ax is sufficiently 
small. Defining the final preconditioning by the modified end points 

(3.25) = (1-q)VL + ?UL2nci ? = (1 -)W + R UR2nd, 

one easily verifies that the reconstruction will now satisfy the slope condition (3.4). 

4. Numerical Experiments. Understandably, one could surmise on first read- 
ing that the precondition-reconstruction-evolution algorithm described in the sec- 
tions above is complicated and possibly difficult to program. Needless to say, we 
believe that this is not the case. In our FORTRAN program we use separate sub- 
routines to perform the preconditioning and reconstruction step. The main routine 
performs the evolution steps along with program initialization and output of the 
approximation. The preconditioning and evolution routines are straightforward 
and we believe warrant no further discussion. A simple to read, while admittably 
not very efficient, FORTRAN code for the reconstruction step of Section 2 is given 
at the end of this section. The preconditioning and reconstruction routines return 
modified cell boundary interface values for the approximation and leave fixed the 
approximation cell average. 

The first numerical example we present is simple linear advection defined by the 
equation 

(9 
(4.1) gju + TyuO=0 

with periodic boundary conditions 

u(0) = U(l)' 

and initial datum 

uo(x) = sin(2rrx). 
For this example we take the ratio At/Ax to be 0.8. Figures la and lb show the 
cell averages (circles) of our third-order method compared to the exact solution to 
(4.1) (the solid lines), using 10 grid points on [0, 1A, after respectively two cycles 
and six cycles; that is t = 2 and t = 6. Notice the very slight dlecay of thie peaks 
after six cycles. The fine resolution found here is retained after miianly iliore cycles. 
Figures 2a and 2b show the performance of the first-order Lax-Friedriclis scheme 
using the same parameters as above. Figure 3 demonstrates tie first-order Lax- 
Friedrichs scheme on the example above after six cycles, this time using 100 grid 
points. Fixing 7_ 1 in the preconditioning step (3.25) defines a second-order TVD 
scheme; variants of this second-order scheme will be the topic of a future paper. 
Figures 4a and 4b illustrate the performance of this second-order scheme with 10 
grid points, again after two and six cycles respectively. To our knowledge, no other 
TVD scheme yields approximations of the quality exemplified by our third-order 
method. This is not surprising since ours is at present the only TVD scheme that is 
guaranteed to retain second-order accuracy at extreme points of the approxinmation. 
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Numerical results of comparable quality have been previously obtained from ENO 
schemes [8], [10], however various theoretical questions concerning the stability of 
ENO approximations remain unresolved. Letting the problem above run through 
100 cycles gives Figure 5a, our third-order TVD method, and Figure 5b, our 8econd- 
order TVD method. The fact that the cell averages of 5b appear to be flat is no 
illusion; its variation is on the order of i0'. 

The second example we consider here is the nonlinear problem 

(4.2) 2au + 
a 

(u2/2) = 0, at ax 
with the same boundary conditions and initial datum as above. An easy calculation 
verifies that the solution to (4.2) remains smooth until t = 1/2wr, after which a shock 
forms. We use this example simply to indicate the convergence of our third-order 
method. Again we take A~t/ZAx = 0.8. Figures 6a, 6b and 6c illustrate the third- 
order method at t = 0.16 1/2wr, using respectively 20, 40 and 80 grid points. 
Figures 7a, 7b and 7c illustrate the third-order method at t = 0.32, again using 20, 
40 and 80 grid points. 

The final problem we examine is given by 

ate + 
a 

f(U) = O. at ax 
where f (u) is the nonconvex function 

U 2 

f(U) = U2 +(-U)2/4 

The initial datum for this problem is assumed to lie in the interval [0,1], and the 
ratio A~t/ZAx is fixed so that 

max~ If'(u)Il -t=0.8. UE[0,1] A U)|Sx 08 

This problem has particular interest since certain TVD schemes have been found 
to frequently "latch" onto entropy violating solutions. 

We consider first the datum, 

UO(X) = {0 x > 1/4. 

Figures 8a, 8b and 8c compare respectively our third-order TVD method, our 
second-order TVD method and the Lax-Friedrichs method, using 40 spatial grid 
points, to the exact solution at t = 0.404. The most notable difference between the 
third-order approximation and the second-order approximation is at the interface 
between the constant state on the left and the rarefaction wave. Additionally, we 
have found that on this example certain well-known schemes tend to "overcompress" 
in the region between the rarefaction wave and the moving discontinuity. As is seen 
in Figure 8, there is no evidence of this phenomenon with our methods. Figure 9 
illustrates the problem with datum 

01 x < 1/4, 
uo(x)={ 1, 1/4 < x < 1/2, 

t01 1/2<x, 



VARIATION NONEXPANSIVE DIFFERENCE SCHEMES 553 

displayed at t = 0.202. Figure 9a demonstrates the performance of our third-order 
method using 40 grid points, 9b demonstrates the performance of our second-order 
method using 40 grid points, and 9c demonstrates the performance of the Lax- 
Friedrichs schemes, this time however using 200 grid points. 

SUBROUTINE RECON(UMIN,UMAX,AVEUL,UR) 
C* 
C* THIS SUBROUTINE ALTERS THE QUADRATIC INTERPOLATION: 
C* P - 3*(UL+UR-2*AVE)*THETA**2 + (UR-UL)*THETA + (AVE-(UL+UR-2*AVE)/4), 
C* THETA = (X-XMID)/DX, XMID - (XL+XR)/2, XL < X < XR, 
C* BY MODIFYING THE CELL BOUNDARY VALUES UL AND UR IN SUCH A WAY AS 
C* TO PRESERVE THE CELL AVERAGE AVE, MAINTAIN THIRD ORDER ACCURACY 
C* WHEN APPLIED TO A FUNCTION U WITH CELL MINIMUM (MAXIMUM) VALUE 
C* UMIN (UMAX), AND TO FURTHERMORE GUARANTEE THAT THE RESULTING 
C* INTERPOLATION P HAS ITS CELL VARIATION BOUNDED BY THE CELL VAR- 
C* IATION OF U. 
C* 

REAL MAXMOD, MINMOD 

ULHAT - UL - AVE 
URHAT = UR - AVE 
AULHAT - ABS( ULHAT ) 
AURHAT - ABS ( URHAT ) 

IF (AULHAT .GE .AUREAT) THEN 
MAXMOD = ULHAT 
MINMOD = URHAT 

ELSE 
MAXMOD - URHAT 
MINMOD - ULHAT 

ENDIF 

IF (MAXMOD.EQ.0 .0) RETURN 

RHO - MINMOD/MAXMOD 

IF(REO.LE.-0.5) RETURN 

CRITVAL - -MAXMOD*( 1.0+REO+REO*RHO )/( 3.0*(1.0+RHO) 
IF(MAXMOD.GT.0.O) THEN 

E = UMIN - AVE 
IF (CRITVAL.GE.E) RETURN 

ELSE 
E - UMAX - AVE 
IF (CRITVAL.LE.E) RETURN 

ENDIF 

EHAT E/MAXMOD 
IF(RHO.LT.0.0) THEN 

TAUMIN - 1.0 
TAUMAX - 0.5*(-(RHO+3.0*EHAT)+SQRT( 3.0*(RHO+3.0*EHAT)*(EHAT-RHO) )) 

ELSE 
TAU = -EHAT*( 3.0*(1.0+RHO)/(1.0+RHO+RHO*RHO) 
TAUMIN - TAU 
TAUMAX TAU 

ENDIF 

IF(AULHAT.GE.AURHAT) THEN 
UL - TAUMAX*ULHAT + AVE 
UR - TAUMIN*URHAT + AVE 

ELSE 
UL - TAUMIN*ULHAT + AVE 
UR - TAUMAX*URHAT + AVE 

ENDIF 

RETURN 
END 
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